首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47736篇
  免费   4159篇
  国内免费   5519篇
  2024年   37篇
  2023年   657篇
  2022年   815篇
  2021年   2360篇
  2020年   1729篇
  2019年   2246篇
  2018年   2084篇
  2017年   1572篇
  2016年   2115篇
  2015年   2966篇
  2014年   3771篇
  2013年   3892篇
  2012年   4702篇
  2011年   4176篇
  2010年   2728篇
  2009年   2443篇
  2008年   2716篇
  2007年   2383篇
  2006年   2069篇
  2005年   1777篇
  2004年   1578篇
  2003年   1456篇
  2002年   1279篇
  2001年   908篇
  2000年   787篇
  1999年   731篇
  1998年   500篇
  1997年   436篇
  1996年   388篇
  1995年   312篇
  1994年   326篇
  1993年   196篇
  1992年   263篇
  1991年   222篇
  1990年   185篇
  1989年   139篇
  1988年   93篇
  1987年   63篇
  1986年   51篇
  1985年   72篇
  1984年   36篇
  1983年   47篇
  1982年   32篇
  1981年   12篇
  1980年   10篇
  1979年   6篇
  1978年   5篇
  1974年   4篇
  1973年   5篇
  1965年   9篇
排序方式: 共有10000条查询结果,搜索用时 3 毫秒
991.
Bacteroides is a bacterial genus that is known to closely interact with the host. The potential role of this genus is associated with its ecological status and distribution in the intestine. However, the current 16S V3–V4 region sequencing method can only detect the abundance of this genus, revealing a need for a novel sequencing method that can elucidate the composition of Bacteroides in the human gut microbiota. In this study, a core gene, rpsD, was selected as a template for the design of a Bacteroides-specific primer set. We used this primer set to develop a novel assay based on the Illumina MiSeq sequencing platform that enabled an accurate assessment of the Bacteroides compositions in complex samples. Known amounts of genomic DNA from 10 Bacteroides species were mixed with a complex sample and used to evaluate the performance and detection limit of our assay. The results were highly consistent with those of direct sequencing with a low Bacteroides DNA detection threshold (0.01 ng), supporting the reliability of our assay. In addition, the assay could detect all the known Bacteroides species within the faecal sample. In summary, we provide a sensitive and specific approach to determining the Bacteroides species in complex samples.  相似文献   
992.
Knowledge regarding the relationship between the molecular mechanisms underlying atherosclerosis (AS) and transfer RNA-derived small RNAs (tsRNAs) is limited. This study illustrated the expression profile of tsRNAs, thus exploring its roles in AS pathogenesis. Small RNA sequencing was performed with four atherosclerotic arterial and four healthy subject samples. Using bioinformatics, the protein-protein interaction network and cellular experiments were constructed to predict the enriched signalling pathways and regulatory roles of tsRNAs in AS. Of the total 315 tsRNAs identified to be dysregulated in the AS group, 131 and 184 were up-regulated and down-regulated, respectively. Interestingly, the pathway of the differentiated expression of tsRNAs in cell adhesion molecules (CAMs) was implicated to be closely associated with AS. Particularly, tRF-Gly-GCC might participate in AS pathogenesis via regulating cell adhesion, proliferation, migration and phenotypic transformation in HUVECs and VSMCs. In conclusion, tsRNAs might help understand the molecular mechanisms of AS better. tRF-Gly-GCC may be a promising target for suppressing abnormal vessels functions, suggesting a novel strategy for preventing the progression of atherosclerosis.  相似文献   
993.
994.
It has been demonstrated that neural precursor cell expressed developmentally downregulated protein (NEDD) plays crucial roles in tumorigenesis and may serve as potential biomarkers in cancer diagnosis and prognosis. However, few studies systematically investigated the expression of NEDD family members in acute myeloid leukaemia (AML). We systemically determined the expression of NEDD family members in AML and determined their clinical significance. We identified that NEDD9 expression was the only member among NEDD family which was significantly increased in AML. NEDD9 overexpression was more frequently classified as FAB-M4/M5 (= 0.008 and 0.013, respectively), hardly as FAB-M2/M3. Moreover, NEDD9 overexpression was significantly associated with complex karyotype and TP53 mutation. The significant association between NEDD9 overexpression and survival was also observed in whole-cohort AML and non-M3 AML patients. Notably, AML patients with NEDD9 overexpression may benefit from hematopoietic stem cell transplantation (HSCT), whereas those cases without NEDD9 overexpression did not. Finally, a total of 822 mRNAs and 31 microRNAs were found to be differentially expressed between two groups. Among the microRNAs, miR-381 was also identified as a microRNA that could direct target NEDD9. Taken together, our findings demonstrated that NEDD9 overexpression is associated with genetic abnormalities as well as prognosis and might act as a potential biomarker guiding the choice between HSCT and chemotherapy in patients with AML after achieving complete remission.  相似文献   
995.
996.
997.
998.
Fluorescent nanostructures have been widely applied to biomedical researches and clinical diagnosis such as biolabeling/imaging/sensing and have even acted as therapy reagents. Peptide‐based fluorescent nanostructures attract recent interest from biomedical researchers. Inspired by the natural existence of GHK‐Cu complex with a growth factor‐like effect in human blood, here we have developed a novel approach for designing nanosensors through the co‐assembling of two kinds of biomolecules. By making best use of both π‐π stacking between carbon rings and the easy‐oxidation property of an important transmitter molecule, dopamine (DA), we successfully built up a supersensitive and robust fluorescent pH nanosensor by co‐assembling oxidized DA (DAox) with a tripeptide GHK. The GHK‐DAox nanostructures have a quantum yield of 20.82%, which might be the brightest one among all the current co‐assembling structures merely through unmodified biomolecules. We envision this approach could open a new avenue for not only hybrid nanostructure construction, but also may inspire the bioengineering of in vivo luminescent probes.  相似文献   
999.
RIG-I and MDA5 are cytoplasmic RNA sensors that mediate cell intrinsic immunity against viral pathogens. While it has been well-established that RIG-I and MDA5 recognize RNA viruses, their interactive network with DNA viruses, including herpes simplex virus 1 (HSV-1), remains less clear. Using a combination of RNA-deep sequencing and genetic studies, we show that the γ134.5 gene product, a virus-encoded virulence factor, enables HSV growth by neutralization of RIG-I dependent restriction. When expressed in mammalian cells, HSV-1 γ134.5 targets RIG-I, which cripples cytosolic RNA sensing and subsequently suppresses antiviral gene expression. Rather than inhibition of RIG-I K63-linked ubiquitination, the γ134.5 protein precludes the assembly of RIG-I and cellular chaperone 14-3-3ε into an active complex for mitochondrial translocation. The γ134.5-mediated inhibition of RIG-I-14-3-3ε binding abrogates the access of RIG-I to mitochondrial antiviral-signaling protein (MAVS) and activation of interferon regulatory factor 3. As such, unlike wild type virus HSV-1, a recombinant HSV-1 in which γ134.5 is deleted elicits efficient cytokine induction and replicates poorly, while genetic ablation of RIG-I expression, but not of MDA5 expression, rescues viral growth. Collectively, these findings suggest that viral suppression of cytosolic RNA sensing is a key determinant in the evolutionary arms race of a large DNA virus and its host.  相似文献   
1000.
International Journal of Peptide Research and Therapeutics - Pecan cake, a by-product of pecan processing, has not been fully developed and utilized. It contains proteins with high nutritional...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号